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Expansion in width for domain walls in nematic liquid crystals in an external magnetic field

H. Arodź
Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland

~Received 30 November 1998!

The improved expansion in width is applied to curved domain walls in uniaxial nematic liquid crystals in an
external magnetic field. In the present paper we concentrate on the case of equal elastic constants. We obtain
an approximate form of the director field up to second order in the magnetic coherence length.
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I. INTRODUCTION

Liquid crystals are probably the best materials for expe
mental and theoretical studies of topological defects. A v
ety of defects, relatively simple experiments in which o
can observe them, and soundness of theoretical mode
dynamics of relevant order parameters make liquid crys
unique in this respect. The literature on topological defect
liquid crystals is enormous, therefore we do not attemp
review it here. Let us only point out Refs.@1–3# where one
can find lucid introductions to the topic as well as collectio
of references.

Our paper is devoted to dynamics of domain walls
uniaxial nematic liquid crystals in an external magnetic fie
Static planar domain walls were discussed for the first ti
in Ref. @4#. We would like to approximately calculate th
director field of a curved domain wall. We use a metho
called the improved expansion in width, whose general t
oretical formulation has been given in Refs.@5,6#. Appropri-
ately adapted expansion in width can also be applied to
clination lines@7#.

The expansion in width is based on the idea that tra
verse profiles of the curved domain wall and of a planar o
differ from each other by small corrections which are due
the curvature of the domain wall. We calculate these corr
tions perturbatively. Formally, we expand the director fie
in a parameter which gives the width of the domain wall, th
is the magnetic coherence lengthjm in the case at hand, bu
in fact terms in the expansion involve the dimensionless
tios jm /Ri , whereRi are ~local! curvature radia of the do
main wall. Therefore, our expansion is expected to provid
good approximation when the curvature radia of the dom
wall are much larger than the magnetic coherence length.
the planar domain walls the perturbative solution reduce
just one term which coincides with a well-known exact s
lution. As we shall see below, the improved expansion
width is not quite straightforward—certain consistency co
ditions appear and a special coordinate system is used—
that should be regarded as a reflection of nontriviality
evolution of the curved domain walls. Nevertheless, sev
first terms in the expansion can be calculated without m
difficulty, and the whole approach looks quite promising.

In the present paper we consider the simplest and ra
elegant case of equal elastic constants. In order to take
account the differences of values of the elastic constants
PRE 601063-651X/99/60~2!/1880~8!/$15.00
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real liquid crystals one can use, for example, the followi
two strategies: a perturbative expansion with respect to
viations of the elastic constants from their mean value, or
expansion in width generalized to the unequal constants c
In the former approach, the equal constant approximate
lution obtained in the present paper can be used as the s
ing point for calculating corrections. The case of uneq
elastic constants we will discuss in a subsequent paper.

The plan of our paper is as follows. We begin with
general description of domain walls in uniaxial nematic li
uid crystals in Sec. II. Next, in Sec. III, we introduce th
special coordinate system comoving with the domain w
Section IV contains the presentation of the improved exp
sion in width. In Sec. V we discuss consecutive terms in
expansion up to the second order injm . Several remarks
related to our work are collected in Sec. V.

II. DOMAIN WALLS IN NEMATIC LIQUID CRYSTALS

In this section we recall basic facts about domain walls
uniaxial nematic liquid crystals@1,2#. We fix our notation
and sketch background for the calculations presented in
next two sections.

We parametrize the director fieldnW (xW ,t) by two angles
Q(xW ,t), F(xW ,t):

nW 5S sinQ cosF
sinQ sinF

cosQ
D . ~1!

In this way we get rid of the constraintnW 251.
We assume that the splay, twist and bend elastic const

are equal (K115K225K335K). In this case the Frank
Oseen-Zo¨cher elastic free energy density can be written
the form

Fe5
K

2
~]aQ ]aQ1sin2 Q ]aF ]aF!. ~2!

Our notation is as follows:a51,2,3,]a5]/]xa, xa are Car-
tesian coordinates in the usual three-dimensional spaceR3;
xW5(xa). In formula ~2! we have abandoned a surface te
which is irrelevant for our considerations.
1880 © 1999 The American Physical Society
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PRE 60 1881EXPANSION IN WIDTH FOR DOMAIN WALLS IN . . .
In order to have stable domain walls it is necessary
apply an external magnetic fieldHW 0 @1,2#. We assume tha
HW 0 is constant in space and time. Without any loss in gen
ality we may take

HW 05S 0
0

H0

D .

Then the magnetic field contribution to the free energy d
sity of the nematic is given by the following formula:

Fm52
1

2
xaH0

2 cos2 Q. ~3!

Here xa is the anisotropy of the magnetic susceptibility.
can be either positive or negative. For concreteness, we
sume thatxa.0. Our calculations can easily be repeated
xa,0. The ground state of the nematic is double degener
Q50 andQ5p give the minimal total free energy densi
F5Fe1Fm . It is due to this degeneracy that the stable d
main walls can exist.

The dynamics of the director field is mathematically d
scribed by the equation

g1

]nW

]t
1

dF

dnW
50W, ~4!

where

F5E d3xF.

The constantg1 is the rotational viscosity of the liquid crys
tal, andd/dnW denotes the variational derivative with respe
to nW . Equation~4! is equivalent to the following equation
for the Q andF angles:

g1

]Q

]t
5KDQ2

K

2
sin~2Q!]a F]aF2

1

2
xaH0

2 sin~2Q!,

~5!

g1 sin2 Q
]F

]t
5K]a~sin2 Q]aF!, ~6!

whereD5]a]a .
The domain walls arise when the director field is para

to the magnetic fieldHW 0 in one part of the space and an
parallel to it in another. In between there is a layer—t
domain wall—across whichnW smoothly changes its orienta
tion from the parallel toHW 0 to the opposite one, that isQ
varies from 0 top or vice versa. The angleF does not play
an important role. The ansatz

F5F0 ~7!

with constantF0 trivially solves Eq.~6!. Then, Eq.~5! is the
only equation we have to solve. In the following we assu
the ansatz~7!, hereby restricting the class of domain wa
we consider. It is clear from formula~2! that domain walls
with varyingF have higher elastic free energy than the wa
with constantF.
o
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Let us recall the static planar domain wall@1,2#. We as-
sume that it is parallel to thex150 plane. Then

Q5Q0~x1!, F05const, ~8!

where

Q0ux1
˜2`50, Q0ux1

˜1`5p. ~9!

One could also consider the ‘‘antidomain wall’’ obtained b
interchanging 0 andp on the right-hand side~RHS! of
boundary conditions~9!. Equation~5! is now reduced to the
following equation:

KQ095
1

2
xaH0

2 sin~2Q0!, ~10!

where primes denoted/dx1. This equation is well-known in
soliton theory as the sine-Gordon equation, see, e.g.,
@8#. It is convenient to introduce the magnetic coheren
lengthjm ,

jm5~K/xaH0
2!1/2. ~11!

The functions

Q0~x1!52 arctanS exp
x12x0

1

jm
D ~12!

with arbitrary constantx0
1 obey Eq. ~10! as well as the

boundary conditions~9!. The planar domain walls~8! are
homogeneous in thex150 plane. Their transverse profile i
parametrized byx1. Width of the wall is approximately
equal tojm , in the sense that forux12x0

1u@jm values ofQ0

differ from 0 or p by exponentially small terms.
The planar domain wall solution~8! contains the two ar-

bitrary constants:F0 andx0
1. The arbitrariness ofF0 is due

to the assumption that the elastic constants are equal. T
the free energy densityF is invariant with respect to the
transformationsF˜F1const. If the elastic constants ar
not equal this invariance is lost, and in the case of pla
domain wallsF0 can take only discrete valuesnp/2, n
50,1,2,3. The constantx0

1 appears because of invariance
Eqs.~5!, ~6! with respect to the translationsx1

˜x11const.
Notice thatQ0(x0

1)5p/2. Hence, atx15x0
1 the directornW

is perpendicular toHW 0 . In fact, the boundary conditions~9!
imply that for any domain wall there’s a surface on whi
nW •HW 050. Such surface is called the core of the domain w
The magnetic free energy densityFm has the maximum on
the core.

The planar domain wall~8!, ~12! plays a very important
role in our approach. In a sense, it is taken as the zeroth o
approximation to the curved domain walls. The trick consi
in using the special coordinate system comoving with
curved domain wall. This coordinate system encodes sh
and motion of the domain wall regarded as a surface in
space. Internal dynamics of the domain wall, in particu
orientation of the director inside the domain wall, is th
calculated perturbatively in the comoving reference fra
with the function~12! taken as the leading term.
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III. THE COMOVING COORDINATES

The first step in our construction of the perturbative so
tion consists in introducing the coordinates comoving w
the domain wall. The two coordinates (s1,s2) parametrize
the domain wall regarded as a surface in theR3 space, and
one coordinate, sayj, parametrizes the direction perpendic
lar to the domain wall. For convenience of the reader
quote below main definitions and formulas@6#.

We introduce a smooth, closed or infinite surfaceS in the
usualR3 space. It is supposed to lie close to the domain w
and its shape mimics the shape of the domain wall. In p
ticular we may assume thatS coincides with the core a
certain timet0 . Points ofS are given byXW (s i ,t), wheres i

( i 51,2) are the two intrinsic coordinates onS, andt denotes
the time. We allow for motion ofS in the space. The vector
XW ,k , k51,2, are tangent toS at the pointXW (s i ,t) ~we use the
notation f ,k[] f /]sk). They are linearly independent, bu
not necessarily orthogonal to each other. At each point oS
we also introduce a unit vectorpW (s i ,t) perpendicular toS,
that is,

pW •XW ,k50, pW 251.

The triad (XW ,k ,pW ) forms a local basis at the pointXW of S.
Geometrically, the surfaceS is characterized by the induced
positive definite metric tensor

gik5XW ,i•XW ,k

and by the extrinsic curvature coefficients

Kil 5pW •XW ,i l ,

wherei ,k,l 51,2. They appear in Gauss-Weingarten form
las

XW ,i j 5Ki j pW 1G i j
l XW ,l , pW ,i52gjl Kli XW , j . ~13!

The matrix (gik) is by definition the inverse of the matri
(gkl), i.e., gikgkl5d l

i , andG ik
l are Christoffel symbols con

structed from the metric tensorgik . The two eigenvalues
k1 ,k2 of the matrix (K j

i ), whereK j
i 5gil Kl j , are called the

extrinsic curvatures ofS at the pointXW . The corresponding
main curvature radia are defined asRi51/ki .

The comoving coordinates (s1,s2,j) are introduced by
the following formula:

xW5XW ~s i ,t !1jpW ~s i ,t !, ~14!

wherej is the coordinate in the direction perpendicular to t
surfaceS. In the comoving coordinates this surface is giv
by the simple conditionj50. We will use the compact no
tation: (s1,s2,j)5(sa), wherea51,2,3 ands35j. The
coordinates (sa) are just a special case of curvilinear coo
dinates in the spaceR3. In these coordinates the metric te
sor (Gab) in R3 has the following components:

G3351, G3k5Gk350, Gik5Ni
lglr Nk

r ,

where
-

e

l,
r-

-

Ni
l5d i

l2jKi
l ,

i ,k,l ,r 51,2. Simple calculations give

AG5AgN,

whereG5det(Gab), g5det(gik), andN5det(Nk
i ). For N we

obtain the following formula:

N512jKi
i1

1

2
j2~Ki

iKl
l2Kl

iKi
l !.

ComponentsGab of the inverse metric tensor inR3 have the
form

G3351, G3k5Gk350, Gik5~N21!r
i grl ~N21! l

k ,

where

~N21!r
i 5

1

N
@~12jKl

l !d r
i 1jKr

i #.

We see that dependence on the transverse coordinatej is
explicit, while s1,s2 appear through the tensorsgik ,Kr

l

which characterize the surfaceS.
The comoving coordinates (sa) have, in general, certain

finite region of validity. In particular, the range ofj at fixed
(s1,s2) is determined from the conditionG.0. It is clear
that it increases with decreasing extrinsic curvature coe
cientsKi

l , reaching infinity for the planar domain wall fo
which K j

i 50. We assume that the surfaceS ~hence also the
domain wall! is not curved too much. Then, that region
large enough, so that outside it there are only exponenti
small tails of the domain wall which give negligible contr
butions to physical characteristics of the domain wall.

The comoving coordinates are utilized to write Eq.~5! in
the form suitable for calculating the curvature correctio
Let us start from the LaplacianDQ. In the new coordinates i
has the form

DQ5
1

AG

]

]sa SAGGab
]Q

]sbD .

The time derivative on the left-hand side~LHS! of Eq. ~5! is
taken under the condition that allxa are constant. It is con-
venient to use time derivative taken at constantsa. The two
derivatives are related by the formula

]

]t U
xa

5
]

]t U
sa

1
]sb

]t U
xa

]

]sb ,

where

]j

]t U
xa

52pW •XẆ ,
]s i

]t U
xa

52~N21!k
i gkrXW ,r•~XẆ 1jpẆ !,

the overdots stand for]/]tus i. Let us also introduce the di
mensionless coordinate

s5j/jm .
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Now we can write Eq.~5! transformed to the comoving co
ordinates (s i ,s) @with the ansatz~7! taken into account#:

g1

K
jm

2 S ]Q

]t U
sa

2
1

jm
pW •XẆ

]Q

]s

2~N21!k
i gkrXW ,r•~XẆ 1jmspẆ !

]Q

]s i D
5

]2Q

]s2 2
1

2
sin~2Q!1

1

N

]N

]s

]Q

]s

1jm
2 1

AgN

]

]s j S GjkAgN
]Q

]skD . ~15!

Equation~15! is the starting point for our construction of th
expansion in width.

IV. THE IMPROVED EXPANSION IN WIDTH

We seek the domain wall solutions of Eq.~15! in the form
of expansion with respect tojm , that is,

Q5Q01jmQ11jm
2 Q21¯ . ~16!

Inserting formula~16! in Eq. ~15! and keeping only terms o
the lowest order (;jm

0 ) we obtain the following equation:

]2Q0

]s2 5
1

2
sin~2Q0!, ~17!

which coincides with Eq.~10! after the rescalingx15jms.
Its solutions

Qs0
~s!52 arctan@exp~s2s0!#,

have essentially the same form as the planar domain w
~12!, but nows gives the distance from the surfaceS. This
surface will be determined later. We shall calculate the c
vature corrections to the simplest solution

Q0~s!52 arctan@exp~s!#. ~18!
e

rd
lls

r-

Because alreadyQ0 interpolates between the ground sta
solutions 0 andp, the correctionsQk , k>1 should vanish in
the limits s˜6`.

Equations for the correctionsQk , k>1 are obtained by
expanding both sides of Eq.~15! and equating terms propor
tional to jm

k . These equations can be written in the form

L̂Qk5 f k , ~19!

with the operatorL̂

L̂5
]2

]s2 2cos~2Q0!5
]2

]s2 1
2

cosh2 s
21. ~20!

The last equality in Eq.~20! can be obtained, e.g., from Eq
~17!: insertingQ0 given by formula~18! on the LHS of Eq.
~17! we find that sin(2Q0)522 sinhs/cosh2 s and cos(2Q0)
5122/cosh2 s. The expressionsf k on the RHS of Eqs.~19!
depend on the lower orders contributionsQ l , l ,k. Straight-
forward calculations give

f 15]sQ0S Kr
r2

g1

K
pW •XẆ D , ~21!

f 252sin~2Q0!Q1
21s]sQ0K j

i Ki
j1]sQ1S Kr

r2
g1

K
pW •XẆ D ,

~22!

f 35
g1

K
~] tQ12gkrXW ,r•XẆ ]kQ1!22 sin~2Q0!Q1Q2

2
2

3
cos~2Q0!Q1

31s]sQ1K j
i Ki

j

2
1

2
s2]sQ0Kr

r@~Ki
i !223K j

i Ki
j #2

1

Ag
] j~Aggjk]kQ1!

1]sQ2S Kr
r2

g1

K
pW •XẆ D ~23!

and
f 45
g1

K
~] tQ22sgikpẆ •XW ,k] iQ1!2

g1

K
gjkXW ,k•XẆ ~] jQ21sKj

i ] iQ1!2sin~2Q0!S Q2
212Q1Q32

1

3
Q1

4D
22 cos~2Q0!Q1

2Q21s]sQ2K j
i Ki

j1s3]sQ0F ~Kr
r !41

1

2
~Ks

rKr
s!222~Kr

r !2K j
i Ki

j G2
s2

2
]sQ1Kr

r~~Ki
i !223K j

i Ki
j !

2
1

Ag
] j~Aggjk]kQ2!2

2s

Ag
] j~AgKjk]kQ1!1sgjk~] jKr

r !]kQ11]sQ3S Kr
r2

g1

K
pW •XẆ D , ~24!
where] t5]/]t, ] i5]/]s i . We have taken into account th
fact thatQ0 does not depend ons i .

Notice that all Eqs.~19! for Qk are linear. The only non-
linear equation in our perturbative scheme is the zeroth o
equation~17!.
er

It is very important to observe that the operatorL̂ has a
zero mode, that is, the functionc0(s) which quickly van-
ishes in the limitss˜6`, and which obeys the equation

L̂c050.
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1884 PRE 60H. ARODŹ
Inserting Qs0
(s) in Eq. ~17!, differentiating that equation

with respect tos0 , and puttings050 we obtain~as the iden-
tity! that L̂c050 where

c0~s!5
1

coshs
. ~25!

The presence of this zero mode is related to the invarianc
Eq. ~17! with respect to translations ins; therefore it is often
called the translational zero mode. Let us multiply both sid
of Eqs. ~19! by c0(s) and integrate overs. Integration by
parts gives

E
2`

`

dsc0L̂Qk5E
2`

`

dsQkL̂c050.

Hence, we obtain the consistency~or integrability! condi-
tions

E
2`

`

dsc0~s! f k~s!50, ~26!

where f k are given by formulas of the type~21!–~24!. We
shall see in the next section that these conditions play a
cial role in determining the curved domain wall solutions

Using standard methods@9# one can obtain the following
formulas for vanishing in the limitss˜6` solutionsQk of
Eqs.~19!:

Qk5G@ f k#1Ck~s i ,t !c0~s!, ~27!

where

G@ f k#52c0~s!E
0

s

dxc1~x! f k~x!

1c1~s!E
2`

s

dxc0~x! f k~x!. ~28!

Herec0(s) is the zero mode~25! and

c1~s!5
1

2 S sinhs1
s

coshsD ~29!

is the other solution of the homogeneous equation

L̂c50.

The second term on the RHS of formula~27! obeys the ho-
mogeneous equationL̂Qk50. It vanishes whens˜6`.

The solutions~27! contain the functionsCk(s
i ,t) which

are still arbitrary. AlsoXW (s i ,t) giving the comoving surface
S has not been specified. It turns out that the conditions~26!
are so restrictive that they essentially fix those functions. T
extrinsic curvature coefficientsKl

i and the metricgik will

follow from XW (s i ,t).
One can worry thatG@ f k#, k>1, given by formula~28!

do not vanish whens˜6` because the second term on t
RHS of formula~28! is proportional toc1 , which exponen-
tially increases in the limitss˜6`. However, the integrals
of

s

u-

e

E
2`

s

dx c0f k

vanish in that limit due to the consistency conditions~26!.
Moreover, qualitative analysis of Eq.~15! shows that f k
;(polynomial ins)3exp(2usu) for large usu, hence those in-
tegrals behave as (polynomial ins)3exp(22usu) for largeusu.
This ensures that allG@ f k# exponentially vanish whenusu
˜`.

V. THE APPROXIMATE DOMAIN WALL SOLUTIONS

In this section we discuss the approximate solutions
tained with the help of the perturbative scheme we have
described. We present formulas for the first two correctio
Q1 andQ2 , an equation forXW (s i ,t) which determines mo-
tion of the surfaceS, as well as equations for the function
C1 ,C2 .

The zeroth order solution is already known, see form
~18!. This allows us to discuss the consistency condition w
k51. Substitutingf 1 from formula ~21! and noticing that

]sQ05
1

coshs
5c0~s!

we find that the consistency condition~26! is equivalent to

g1

K
pW •XẆ 5Kr

r . ~30!

This condition is in fact the equation forXW . It is of the same
type as Allen-Cahn equation@10#, but in our approach it
governs the motion of the auxiliary surfaceS.

Let us now turn to the perturbative corrections. After ta
ing into account Allen-Cahn equation~30! we havef 150.
Therefore, the total first order contribution has the form

Q15
C1~s i ,t !

coshs
. ~31!

The second order contributionQ2 is calculated from for-
mula ~28! with f 2 given by Eq.~22!. Using the results~30!,
~31! we obtain the following expression:

Q25c2~s!C1
2~s i ,t !1c3~s!K j

i Ki
j1

C2~s i ,t !

coshs
, ~32!

where

c2~s!52
sinhs

2 cosh2 s
,

and

c3~s!5
1

2
s coshs2

s

2 coshs
2c1~s!ln~2 coshs!

1
s2 sinhs

4 cosh2 s
2

1

4 coshs E0

s

dx
x2

cosh2 x
.
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PRE 60 1885EXPANSION IN WIDTH FOR DOMAIN WALLS IN . . .
The integral inc3(s) can easily be evaluated numericall
Due to the consistency conditions, the functionsC1 ,C2 in
formulas~31!, ~32! are not arbitrary, see below.

The consistency condition~26! with k52 does not give
any restrictions—it can be reduced to the identity 050.
More interesting is the next condition, that is the one w
k53. Inserting formula~23! for f 3 and calculating necessar
integrals overs, we find that it can be written in the form o
the following inhomogeneous equation forC1(s i ,t)

g1

K
~] tC12gkrXW ,r•XẆ ]kC1!2

1

Ag
] j~Aggjk]kC1!2K j

i Ki
jC1

5
p2

24
Kr

r@~Ki
i !223K j

i Ki
j #. ~33!

We have also used Allen-Cahn equation~30!. Equation~33!
determinesC1 provided that we fix initial data for it. Simi-
larly, the consistency condition coming from the fourth ord
(k54) is equivalent to the following homogeneous equat
for C2 :

g1

K
~] tC22gkrXW ,r•XẆ ]kC2!2

1

Ag
] j~Aggjk]kC2!2K j

i Ki
jC2

50. ~34!

Formulas~16!, ~18!, ~31!, and ~32! give a family of do-
main walls. To obtain one concrete domain wall solution
have to choose the initial position of the auxiliary surfaceS.
Its positions at later times are determined from Allen-Ca
equation~30!. We also have to fix the initial values of th
functionsC1 ,C2 , and to find the corresponding solutions
Eqs.~33!,~34!. Notice that we are not allowed to choose t
initial profile of the domain wall because the dependence
the transverse coordinates is explicitly given by formulas
~18!, ~31!, and~32!. The choice of the initial data should no
lead to large perturbative corrections at least in certain fi
time interval. Therefore we require that at the initial tim
jmC1!1, jm

2 C2!1, jmK j
i !1. The domain wall is located

close to the surfaceS because for largeusu the perturbative
contributions exponentially vanish and the leading te
2 arctan(es) is close to one of the vacuum values 0,p.

Notice that Eqs.~30!, ~33!, and~34! imply that the planar
domain wall (K j

i 50) cannot move, in contradistinction wit
relativistic domain walls for which uniform, inertial motion
are possible.

In our approach the evolution of the domain wall is d
scribed in terms of the surfaceS, and of the functionsC1 ,C2
which can be regarded as fields defined onS. In some cases
Eqs. ~30!, ~33!, ~34! for S, C1 , andC2 can be solved ana
lytically, one can also use numerical methods. Anyw
these equations are much simpler than the initial Eq.~5!.

The presented formalism is invariant with respect
changes of the coordinatess1,s2 on S. In particular, in a
vicinity of any pointXW of S we can choose the coordinates
such a way thatgik5d ik at XW . In these coordinates Eq.~30!
has the form
r
n

e

n

n

e

-

,

g1

K
v5

1

R1
1

1

R2
, ~35!

wherev is the velocity in the directionpW perpendicular toS
at the pointXW , andR1 ,R2 are the main curvature radia ofS
at that point.

As an example, let us consider cylindrical and spheri
domain walls. IfS is a straight cylinder of radiusR then
R15`, R252R(t), v5Ṙ and Eq.~35! gives

R~ t !5AR0
22

2K

g1
~ t2t0!, ~36!

where R0 is the initial radius. The origin of the Cartesia
coordinate frame is located on the symmetry axis of the c
inder S ~which is thez axis!, pW is the outward normal toS,
and s5@Ar 22z22R(t)#/jm , where r is the radial coordi-
nate inR3. As s1,s2 we take the usual cylindrical coordi
natesz,f. Equations~33!, ~34! reduce to

g1

K
] tC12S ]z

2C11
1

R2 ]f
2 C1D2

1

R2 C15
p2

12

1

R3 , ~37!

g1

K
] tC22S ]z

2C21
1

R2 ]f
2 C2D2

1

R2 C250. ~38!

If at the initial timet0 the functionsC1 ,C2 have constant
valuesC1(0),C2(0) all over the cylinder, then

C1~ t !5
p2

12R~ t !
ln@R0 /R~ t !#1

R0

R~ t !
C1~0!,

C2~ t !5
R0

R~ t !
C2~0!. ~39!

General solutions of Eqs.~37!,~38! can be found by splitting
C1 ,C2 into Fourier modes, but we shall not present the
here.

The case of spherical domain wall is quite similar. NowS

is the sphere of radiusR andR15R252R, v5Ṙ. Equation
~35! gives

R~ t !5AR0
22

4K

g1
~ t2t0!, ~40!

The origin is located at the center of the sphere,s5@r
2R(t)#/jm , and pW is the outward normal toS. As sk we
take the usual spherical coordinates. Then, Eqs.~33!,~34! can
be written in the form

g1

K
] tC12

1

R2 S 1

sinu
]u~sinu]uC1!1

1

sin2 u
]f

2 C1D2
2

R2 C1

5
p2

6

1

R3 ~41!

and
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g1

K
] tC22

1

R2 S 1

sinu
]u~sinu]uC2!1

1

sin2 u
]f

2 C2D2
2

R2 C2

50. ~42!

General solution of these equations can be obtained by
pandingC1 ,C2 into spherical harmonics. In the particula
case whenC1 ,C2 are constant on the sphereS, the solutions
Ck(t) have the same form~39! as in the previous case exce
that nowR(t) is given by formula~40!. In both cases our
approximate formulas are expected to be meaningful as
asR(t)/jm@1.

Because we have found the transverse profile of the
main wall explicitly, we can express the total free energyF
by geometric characteristics of the domain wall. One sho
insert our approximate solution forQ in formulas~2! and~3!
for Fe andFm , and to perform integration overs. The vol-
ume elementd3x is taken in the form

d3x5jmAG d2s ds.

For simplicity, let us consider curved domain walls f
which

C1505C2 .

Straightforward calculation gives

F52
K

2

V

jm
2 1

2K

jm
uSu2

p2

6
KjmE d2sAg

3S 1

R1
2 1

1

R2
2 2

1

R1R2
D 1~ terms of the orderjm

3 ! ,

~43!

whereuSu denotes the area of the surfaceS, andV is the total
volume of the liquid crystalline sample. The first term on t
RHS of this formula is a trivial bulk term which appea
because the smallest value of the magnetic free energy
sity has been chosen to be equal to2K/(2jm

2 ). The proper
domain wall contribution starts from the second term. T
term gives the main contribution of the domain wall toF.
One can think about the corresponding constant free en
2K/jm per unit area. The third term on the RHS of formu
~43! represents the first perturbative correction. It is of t
order (jm /Ri)

2 when compared with the main term, an
within the region of validity of our perturbative scheme it
small. One can easily show that this term is negative or z
Hence, it slightly diminishes the total free energy. In th
sense, the domain walls have negative rigidity—bend
them without stretching~i.e., with uSu kept constant! dimin-
ishes the free energy.

VI. REMARKS

We would like to add several remarks about the exp
sion in width and the approximate domain wall solutions
yields.
x-

g

o-

ld

n-

s

gy

e

o.

g

-
t

~1! In the approach presented the dynamics of the cur
domain wall in the three-dimensional space is described
terms of the comoving surfaceS and of the functionsCk ,
k<1, defined onS. The profile of the domain wall has bee
explicitly expressed by these functions, the transverse c
dinatej, and the geometric characteristics ofS. The surface
S and the functionsCk obey Eqs.~30!,~33!,~34! which do not
containj. In particular cases these equations can be sol
analytically, and in general one can look for numerical so
tions. Such numerical analysis is much simpler than it wo
be in the case of the initial equation~5! for the angleQ,
precisely because one independent variable has been e
nated.

~2! We have usedjm as the formal expansion paramete
This may seem unsatisfactory because it is a dimensio
quantity, hence it is hard to say whether its value is smal
large. What really matters is smallness of the correctio
jmQ1 ,jm

2 Q2 . This is the case whenjmC1!1, jm
2 C2!1, and

jmK j
i !1, as it follows from formulas~16!, ~31!, and~32!.

~3! Notice that an assumption thatS coincides with the
core for all times in general would not be compatible w
the expansion in width. If we assume thatC1505C2 at
certain initial timet0 , Eq. ~33! implies thatC1Þ0 at later
times ~unless the RHS of it happens to vanish!. Then, it
follows from formulas~16!, ~18!, and ~31! that QÞp/2 at
s50, that is, onS.

~4! In the present work we have neglected effects wh
could come from perturbations of the exponentially sm
tails of the domain wall. For example, consider a dom
wall in the form of an infinite straight cylinder flattened from
two opposite sides. Its front and rear flat sides have van
ing curvatures, and according to Eq.~35! they do not move.
In our description the flattened domain wall shrinks from t
edges where the mean curvature 1/R111/R2 does not vanish.
Now, in reality the front and rear flat parts interact with ea
other. This interaction is exponentially small only if the tw
parts are far away from each other. We have neglecte
altogether assuming the exact 2 arctan(es) asymptotics at
large s. In this sense, our approximate solution takes in
account only the effects of curvature.

~5! Finally, let us mention that the dynamics of the d
main walls in nematic liquid crystals can also be investiga
with the help of another approximation scheme, called
polynomial approximation. In the first paper@11# it has been
applied to the cylindrical domain wall, and in the second o
to a planar soliton. Comparing the two approaches, the p
nomial approximation is much cruder than the expansion
width. It also contains more arbitrariness, e.g., in choosin
concrete form of boundary conditions atusu˜`. On the
other hand, that method is much simpler and it can be us
for rough estimates.
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